Ring A is exo-buckled with a pucker angle of $33.2(6)^{\circ}$. The angle of $124.2(5)^{\circ}$ between the planes defined by atoms C(1), C(8), N(4), C(3) and C(5), N(4), C(8), C(7) is characteristic of pyrrolizidine nuclei. Heliotridine itself (Gelbaum, Glinski, VanDerveer & Zalkow, 1985) and the two monoester heliotridine alkaloids lasiocarpine (Hay, Mackay & Culvenor, 1982) and heliotrine (Wodak, 1975) exist with ring A in the endo-buckled form. The addition of the macrocycle has therefore induced a conformational change to the more favoured exo-form which dominates other pyrrolizidine alkaloid bases. An exception to this is the macrocyclic diester madurensine 13-membered (Mackay, Sadek & Culvenor, 1984) which has the endo-buckled conformation due, most likely, to the attachment of the ester macrocycle at C(6).

The carbonyl bonds of the ester functions are antiparallel with an angle of 11.8 (6)° between the carbonyl bonds of the planar primary and secondary ester groups. The ester carbonyl group C(11)=O(11) is orientated in the same direction as C(8)-H. The alternative antiparallel conformation of the macro-ring has been found for the 11-membered retronecine diester trichodesmine (Tashkhodzhaev, Yagudaev & Yunusov, 1979) whilst the 11-membered macro-rings of the retronecine diesters of fulvine (Sussman & Wodak, 1973), axillarine (Stoeckli-Evans & Crout, 1976), monocrotaline (Stoeckli-Evans, 1979) and incanine (Tashkhodzhaev, Telezhenetskaya & Yunusov, 1979) all have the C(9) ester carbonyl bond directed below the plane of the macro-ring and synparallel to the C(7)ester carbonyl bond.

The transannular distance $O(10)\cdots O(16)$ of 2.998 (6) Å is similar to values found for other macrocyclic pyrrolizidine alkaloids where the ester

carbonyl bonds are antiparallel. There are no unusually short intermolecular contacts between any pairs of molecules.

We thank the Carnegie Trust for the Universities of Scotland for a Scholarship to DBH.

References

- GELBAUM, L. T., GLINSKI, J. A., VANDERVEER, D. & ZALKOW, L. H. (1985). Acta Cryst. C41, 1342–1345.
- GILMORE, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- HAGAN, D. B. & ROBINS, D. J. (1987). J. Chem. Soc. Perkin Trans. 1. In the press.
- HAY, D. G., MACKAY, M. F. & CULVENOR, C. C. J. (1982). Acta Cryst. B38, 155–159.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MACKAY, M. F., SADEK, M. & CULVENOR, C. C. J. (1984). Acta Cryst. C40, 1073-1077.
- MALLINSON, P. R. & MUIR, K. W. (1985). J. Appl. Cryst. 18, 51-53.
- MATTOCKS, A. R. (1986). Chemistry and Toxicology of Pyrrolizidine Alkaloids. London: Academic Press.
- ROBINS, D. J. (1982). Fortschr. Chem. Org. Naturst. 41, 115-203.
- STOECKLI-EVANS, H. (1979). Acta Cryst. B35, 231-234.
- STOECKLI-EVANS, H. & CROUT, D. H. G. (1976). Helv. Chim. Acta, 59, 2168-2178.
- SUSSMAN, J. L. & WODAK, S. J. (1973). Acta Cryst. B29, 2918–2926.
- TASHKHODZHAEV, B., TELEZHENETSKAYA, M. V. & YUNUSOV, S. YU. (1979). Khim. Prir. Soedin. pp. 363-367.
- TASHKHODZHAEV, B., YAGUDAEV, M. R. & YUNUSOV, S. YU. (1979). Khim. Prir. Soedin. pp. 368-373.
- WARREN, F. L. (1970). In *The Alkaloids*, Vol. XII, edited by R. H. F. MANSKE, ch. 4. London, New York: Academic Press.
- WODAK, S. J. (1975). Acta Cryst. B31, 569-573.

Acta Cryst. (1988). C44, 668-671

Structure de la Nitro-7 Oxo-3 Benzoxasélénol-2,1-oxyde-1

PAR M. SBIT, L. DUPONT ET O. DIDEBERG

Laboratoire de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

ET C. LAMBERT

Laboratoire de Chimie Organique, Institut de Chimie B6, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

(Reçu le 2 septembre 1987, accepté le 7 décembre 1987)

Abstract. 7-Nitro-3-oxo-2,1-benzoxaselenole 1-oxide, $3317 \cdot 9(7)$ Å³, Z = 16, $D_x = 2 \cdot 082$ g cm⁻³, λ (Cu Kā) C₇H₃NO₅Se, $M_r = 260 \cdot 063$, orthorhombic, *Pbnb*, $a = 1 \cdot 5418$ Å, $\mu = 62 \cdot 51$ cm⁻¹, F(000) = 2016, $T = 11 \cdot 442$ (2), $b = 14 \cdot 569$ (3), $c = 19 \cdot 904$ (5)Å, V = 290 K, m.p. = 490–493 K, final R = 0.055 for 1752

0108-2701/88/040668-04\$03.00

© 1988 International Union of Crystallography

Tableau	1. Coord	onnées j	fractio	nnaires	(X	104)	et	Béq
des a	tomes no	n-hydro	ogène, a	wec les	écar	ts-ty	ре	

$\boldsymbol{B}_{\text{éq}} = \frac{8}{3}\pi^2 \sum_i \sum_j U_{ij} \boldsymbol{a}_i^* \boldsymbol{a}_j^* \boldsymbol{a}_j \cdot \boldsymbol{a}_j \text{ où } \boldsymbol{a}$, est la constante de la maille directe.
---	--

	x	У	Ζ	$B_{\acute{eq}}(\AA^2)$
Cl	6561 (7)	887 (5)	3324 (4)	2,8 (2)
C2	5647 (7)	636 (5)	2918 (4)	2,8 (2)
C3	5049 (7)	1271 (6)	2538 (4)	3,6 (2)
C4	5371 (8)	2188 (6)	2590 (5)	3,8 (2)
C5	6241 (7)	2462 (6)	3031 (4)	3,4 (2)
C6	6841 (6)	1806 (5)	3395 (4)	2,5 (2)
C7	7722 (7)	1990 (6)	3903 (4)	3,5 (2)
N1	5283 (7)	-332 (5)	2944 (4)	3,9 (2)
01	5897 (6)	-865 (4)	3282 (4)	5,0 (2)
02	4406 (6)	-556 (4)	2642 (3)	5,0 (2)
O3	7961 (6)	2749 (5)	4118 (3)	5,6 (2)
O4	8230 (5)	1249 (4)	4163 (3)	4,3 (2)
O5	8511 (5)	-278 (4)	3352 (3)	4,7 (2)
Sel	7549(1)	107 (1)	3870(1)	3,9(1)
C11	905 (7)	2231 (5)	581 (4)	2,9 (2)
C12	477 (7)	3113 (6)	491 (4)	3,4 (2)
C13	916 (9)	3838 (6)	884 (5)	4,5 (3)
C14	1774 (8)	3650 (7)	1348 (4)	4,2 (3)
C15	2183 (8)	2784 (7)	1448 (5)	4,5 (3)
C16	1729 (7)	2079 (6)	1055 (4)	3,6 (2)
C17	2114 (7)	1122 (6)	1129 (4)	3,5 (2)
N11	-423 (8)	3226 (7)	-33 (5)	6,1 (3)
011	-643 (6)	2503 (6)	-372 (4)	6,1 (2)
012	-921 (8)	3965 (6)	-115 (5)	8,5 (3)
013	2775 (7)	885 (5)	1558 (4)	7,0 (3)
O14	1678 (6)	553 (4)	702 (3)	5,0 (2)
015	-719 (5)	795 (4)	361 (3)	4,9 (2)
Sell	595 (2)	1127 (2)	100 (1)	3,2 (1)
Se21	157 (3)	1407 (2)	-85 (2)	3,2 (1)

observed reflections. The site of molecule *B* is disordered: *B* occupies two alternative positions related by a non-crystallographic symmetry plane nearly perpendicular to the benzene ring and passing through the O atom of the Se-oxide function and the benzene centroid. Only the two positions of the Se atom can be refined separately with occupation factors of 0.56(1)and 0.44(1) respectively. There is ring closure by an Se-O bond with the O atom of the carboxyl group [1.928(6) in molecule *A*, 1.915(6) in *B*, site 1, and 1.928(8) Å in *B*, site 2]. The distances Se-selenium oxide O atom are respectively 1.608(6), 1.662(6) and 1.608(6) Å. The cohesion of the crystal is the result of van der Waals interactions.

Introduction. La nitro-7 benzoxasélénol-2,1 one-3 a été synthétisée et sa structure cristalline déterminée (Sbit, Dupont, Dideberg & Lambert, 1988). Cette substance a ensuite été oxydée en nitro-7 oxo-3 benzoxasélénol-2,1-oxyde-1 par le peroxyde d'hydrogène. Il s'agit encore d'un anhydride cyclique mixte entre un acide carboxylique et un acide sélénénique. L'étude radiocristallographique a été entreprise dans le but de confirmer la structure établie par les méthodes spectroscopiques habituelles (spectrométrie de masse, RMN ¹H, ¹³C et ⁷⁷Se, infrarouge et analyse élémentaire) et aussi pour examiner la géométrie des liaisons du Se.

Partie expérimentale. Cristallisé dans le toluène. Cristal incolore: $0.34 \times 0.53 \times 0.27$ mm. Paramètres de la

maille déterminés à partir de 30 réflexions (33 \leq $\theta \leq 35^{\circ}$). Diffractomètre Siemens. 2085 réflexions uniques mesurées, $2\theta \le 110^\circ$, Cu $K\overline{\alpha}$, monochromatisée au graphite, balayage ω , $0 \le h \le 12$, $0 \le k \le 15$, $0 \le k \le 15$ $l \le 21$. Réflexions de référence: $3270 \le F_o(444) \le$ 3480, $1550 \le F_o(42\overline{4}) \le 1650$. Corrections d'absorption par la méthode semi-empirique de North, Phillips & Mathews (1968): coefficients de transmission compris entre 0,10 et 0,33. Structure déterminée avec MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). Affinement basé sur F (matrice entière des équations normales), avec SHELX76 (Sheldrick, 1976). Facteurs de diffusion sont ceux de SHELX. Facteurs de température anisotrope affinés pour les atomes non-hydrogène. Facteur *B* global affiné pour les H = 5,0 (9) Å². Deux molécules indépendantes. Molécule B: deux sites d'occupation pour le Se avec des facteurs d'occupation affinés: 0,56 (1) et 0,44 (1). Les sites d'occupation correspondants pour les autres atomes de la molécule B n'ont pu être différenciés en position. Facteur R final = 0,055 pour 1752 réflexions observées: w = 1,0, Δ/σ des paramètres finals ≤ 0.033 . Limites des hauteurs de pic dans le synthèse Fourier-différence final: -1,0 et 0,5 e Å⁻³. Les coordonnées fractionnaires et les $B_{éq}$ des atomes non-hydrogène sont donnés dans le Tableau 1.* Une vue de la molécule est donnée dans la Fig. 1.

Discussion. Les distances et les angles des liaisons (Tableau 2) sont conformes aux valeurs observées dans la nitro-7 benzoxasélénol-2,1 one-3 (I) (Sbit *et al.*, 1988). La comparaison des paramètres géométriques des molécules A et B ne peut être faite valablement du fait que la molécule B partage deux sites d'occupation dans le rapport 0,56 (1)-0,44 (1). Les deux positions alternatives de B se correspondent par un plan de symétrie

^{*} Les listes des facteurs de structure, les facteurs d'agitation thermique anisotrope et les coordonnées des atomes H ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 44602: 11 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Vue en perspective de la molécule A avec la numérotation des atomes. Les atomes de la molécule B sont numérotés en incrémentant de 10 les membres correspondants de A.

 Tableau 2. Distances interatomiques (Å) et angles des liaisons (°) avec les écarts-type

Molécule A C2-C1 C6-C1 Se1-C1 C3-C2 N1-C2 C4-C3 C5-C4 C6-C5 C7-C6 O3-C7 O4-C7 O1-N1 O2-N1 Se1-O4 Se1-O5 Se1-O1	$\begin{array}{c} 1,372 \ (11) \\ 1,383 \ (11) \\ 1,936 \ (8) \\ 1,376 \ (11) \\ 1,472 \ (10) \\ 1,390 \ (11) \\ 1,386 \ (12) \\ 1,383 \ (11) \\ 1,453 \ (11) \\ 1,453 \ (11) \\ 1,453 \ (11) \\ 1,216 \ (10) \\ 1,330 \ (10) \\ 1,245 \ (9) \\ 1,213 \ (9) \\ 1,213 \ (9) \\ 1,928 \ (6) \\ 2,636 \ (6) \end{array}$	Molécule B Se11-Se21 C12-C11 C16-C11 Se21-C11 C13-C12 N11-C12 C14-C13 C15-C14 C16-C15 C17-C16 O13-C17 O14-C17 O14-C17 O11-N11 O12-N11 Se21-O11 Se11-O14 Se11-O15 Se21-O11 Se21-O11 Se21-O11	0,744 (2) 1,387 (11) 1,352 (11) 1,905 (8) 1,984 (8) 1,406 (12) 1,475 (12) 1,376 (13) 1,360 (13) 1,392 (12) 1,468 (12) 1,192 (10) 1,289 (10) 1,226 (11) 1,229 (11) 1,928 (8) 1,915 (7) 1,662 (6) 2,629 (6) 2,651 (6)
C6-C1-C2 Se-C1-C2 Se-C1-C6 C3-C2-C1 N1-C2-C3 C4-C3-C2 C5-C4-C3 C5-C6-C1 C7-C6-C1 C7-C6-C1 C7-C6 O4-C7-O3 O1-N1-C2 O2-N1-O1 Se1-O4-C7 O4-Se1-C1 O5-Se1-O4	119,7 (7) 128,3 (6) 112,0 (6) 121,5 (7) 116,8 (7) 121,6 (7) 118,3 (8) 120,9 (8) 119,3 (8) 120,1 (7) 114,3 (7) 125,5 (8) 115,1 (7) 120,2 (8) 115,1 (7) 120,2 (8) 117,2 (7) 118,3 (8) 124,5 (8) 114,0 (3) 84,2 (3) 104,2 (3) 102,7 (3)	$\begin{array}{c} C16-C11-C12\\ Sel1-C11-C12\\ Sel1-C11-C12\\ Sel1-C11-C12\\ Se21-C11-C12\\ Se21-C11-Sel11\\ C13-C12-C11\\ N11-C12-C11\\ N11-C12-C13\\ C14-C13-C12\\ C15-C14-C13\\ C14-C13-C12\\ C15-C14-C13\\ C16-C15-C14\\ C15-C16-C11\\ C17-C16-C11\\ C17-C16-C15\\ O13-C17-C16\\ O14-C17-O13\\ O11-N11-C12\\ O12-N11-C12\\ O12-N11-O11\\ Se11-O14-C17\\ O14-Se11-C11\\ O15-Se11-O14\\ O11-Se21-C11\\ O15-Se21-C11\\ O15-Se21-C11\\ O15-Se21-C11\\ O15-Se21-C11\\ O15-Se21-C11\\ O15-Se21-O11\\ \end{array}$	$119,3 (8) \\ 130,6 (6) \\ 110,0 (6) \\ 108,8 (6) \\ 131,9 (7) \\ 21,9 (1) \\ 119.8 (8) \\ 116,2 (8) \\ 124,0 (9) \\ 118,3 (9) \\ 122,1 (9) \\ 118,3 (9) \\ 122,1 (9) \\ 115,8 (8) \\ 122,1$

non-cristallographique contenant C11, C14 et O15, approximativement perpendiculaire au plan benzénique C11...C16 [**P**1] d'équation 0,7093x + 0,1662y-0.6851z = 0.4741. Les coordonnées données pour N11 dans le Tableau 1 sont donc en fait la movenne des positions de N11, site 1 et de C17, site 2 avec des facteurs d'occupation respectifs de 0,56 et 0,44. Il en est de même pour les paires d'atomes C13, C15, C12, C16, O11, O14 et O12, O13. Seuls Sel1 et Se21 se différencient nettement en deux sites distants de 0,744 (2) Å. Aucun argument physico-chimique précis ne permet de rendre compte de ce type de désordre. En fonction du processus de synthèse chimique du produit, on doit en effet s'attendre à avoir en solution 50% de chaque énantiomère, alors que dans le cristal on les trouve dans les proportions 0,72-0,28. Il n'a pas été possible de vérifier si ce rapport varie d'un cristal à l'autre car le nombre d'échantillons convenant pour des mesures cristallographiques était très limité. Un désordre relatif au Se, dans une proportion 50-50%, a déjà été observé dans le benzisosélénazole-1,2 (Campsteyn, Dupont, Lamotte & Vermeire, 1978). Comme dans (I), les caractéristiques structurales permettent de considérer la formation d'un hétérocycle à cinq chaînons avec une liaison selenium-oxygène du groupe carboxyl. Les atomes C1, C6, C7, O4 et Se1 sont coplanaires (plan moven P2) avec des déviations inférieures à 5,6 σ (A) et 3,6 σ (B). L'angle P1-P2 vaut 3,3 (2)° dans A et 3,9 (2)° dans B. Les distances Se-O du groupe nitro sont plus élevées que dans (I) (valeur moyenne 2,64 au lieu de 2,42 Å). Cette valeur reste toutefois nettement inférieure à la somme des ravons de van der Waals des deux atomes (3,5-3,6 Å: Nyburg & Faerman, 1985). Il y a donc une interaction liante Se1...01, toutefois moins forte que celle entre Se et l'oxygène du groupe carboxyl. Les distances Se1-O5 et Sel1-O15 sont significativement plus courtes que la liaison simple Se-O dans l'acide méthylsulfinyl-2 benzoïque (Dahlén, 1973). Les angles Se1-C1-C2 et Se1-C1-C6 [A: 128,3 (6) et 112,0 (6); B, site 1: 130,6 (6), 110,0 (6), B, site 2: 131,9 (7), 108,8 (6)°] montrent que la liaison Se1-C1 est dissymétrique par rapport au plan benzénique [comme dans (I)], Se1 étant par ailleurs hors du plan P1 avec des déviations Δ respectivement égales à 0,076 (1) (A), 0,145 (2) (B, site 1) et 0,110 (3) Å (B, site 2). Il en est de même, dans une moindre mesure, des liaisons C7-C6 et N1-C2. C7 est hors du plan Pl avec $\Delta = -0.126$ (8) (A) et -0.027 (9) Å (B), tandis que Δ [N(1)] = -0.189 (7) (A) et 0,009 (10) Å (B). Les valeurs numériques relatives à B n'ont évidemment qu'un caractère indicatif puis-

Fig. 2. Vue de l'empilement suivant l'axe b de la maille. La molécule B n'a été représentée que dans son site 1 (facteur d'occupation 0,56).

qu'elles concernent des moyennes de deux sites. Les molécules A et B ont tous leurs atomes [excepté O(5)] approximativement coplanaires. On observe en effet les angles de torsion suivants: C1-C6-C7-O4: 7,9 (8) (A) et 4,6 (9)° (B), C1-C2-N1-O1: -6,6 (8) (A) et -4,4 (9)° (B), N1-C2-C1-Se1: 6,7 (8) (A), 4,3 (9) (B, site 1) et -4,0 (9)° (B, site 2), C2-C1-Se1-O5: 82,4 (5) (A), -108,3 (5) (B, site 1) et 74,0 (6)° (B, site 2). L'ensemble des interactions intermoléculaires correspond à des liaisons du type van der Waals.

La Fig. 2 montre une vue de l'empilement suivant l'axe b de la maille.

Les auteurs remercient M. M. Vermeire pour son assistance au niveau des mesures diffractométriques.

Références

- CAMPSTEYN, H., DUPONT, L., LAMOTTE, J. & VERMEIRE, M. (1978). J. Heterocycl. Chem. 15, 745–748.
- DAHLÉN, B. (1973). Acta Cryst. B29, 595-602.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. de York, Angleterre, et de Louvain-la-Neuve, Belgique.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A 24, 351-359.
- NYBURG, S. C. & FAERMAN, C. H. (1985). Acta Cryst. B41, 274-279.
- SBIT, M., DUPONT, L., DIDEBERG, O. & LAMBERT, C. (1988). Acta Cryst. C44, 340-342.
- SHELDRICK, G. M. (1976). SHELX76. Programme pour la détermination des structures cristallines. Univ. de Cambridge, Angleterre.

Acta Cryst. (1988). C44, 671-673

Structural Investigation of Highly Hindered Methanol Derivatives. 1. The Structure of α-Cyclohexylcyclohexanemethanol

By Paolo Sgarabotto* and Franco Ugozzoli

Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, I-43100 Parma, Italy

SALVATORE SORRISO

Dipartimento di Chimica, Università di Perugia, I-06100 Perugia, Italy

AND ZBIGNIEW MALARSKI

Instytut Chemii, Uniwersytet Wroclawski, 50-383 Wroclaw, Poland

(Received 27 April 1987; accepted 26 November 1987)

Abstract. $C_{13}H_{24}O$, $M_r = 196\cdot3$, triclinic, $P\overline{1}$, $a = 12\cdot494$ (3), $b = 10\cdot612$ (3), $c = 10\cdot290$ (3) Å, $\alpha = 99\cdot9$ (1), $\beta = 105\cdot5$ (1), $\gamma = 78\cdot1$ (1)°, $V = 1276\cdot5$ Å³, Z = 4, $D_x = 1\cdot02$ g cm⁻³, $\lambda(Cu K\alpha) = 1\cdot5418$ Å, $\mu = 4\cdot4$ cm⁻¹, F(000) = 440, T = 293 K, final conventional R 0.048 for 1611 independent observed reflections. The four independent cyclohexane rings adopt a chair conformation very close to the theoretical geometry. The hydrogen bonds involving the oxygen atom lead to the formation of tetrameric units.

Introduction. In studying the molecular dynamics of alcohols, the first problem of interpretation is connected with knowing to which species the results refer. In fact the structure and general physical behaviour of alcohols are essentially controlled by two factors: the presence of hydrogen bonds and steric effects. In the

0108-2701/88/040671-03\$03.00

solid phase 1-adamantanol forms long chains, triphenylcarbinol, triphenylethynylcarbinol, diphenylethynylmethylcarbinol and di-tert-butylcarbinol form dimers while tri-tert-butylcarbinol remains monomeric (Malarski, Szostak & Sorriso, 1984). Previous papers have reported results obtained from Raman laser, infrared and dielectric relaxation measurements (Meakins, 1956; Malarski, 1974; Kołodziej & Malarski, 1982; Bator, Malarski, Kołodziej & Sorriso, 1984; Bator, Jakubas & Malarski, 1987). Thus the structures of cyclohexyl-substituted carbinols are of particular interest because cyclohexyl substituents are quite large and appear not to be rigid. In the present paper we report the structure of α -cyclohexylcyclohexanemethanol (dicyclohexylcarbinol) obtained from X-ray analysis.

Experimental. Colourless prismatic crystals elongated on [010] obtained by slow crystallization from cyclo-

© 1988 International Union of Crystallography

^{*} To whom all correspondence should be addressed.